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Abstract

■ A critical aspect of conceptual knowledge is the selective ac-
tivation of goal-relevant aspects of meaning. Although the con-
tributions of ventrolateral prefrontal and posterior temporal
areas to semantic cognition are well established, the precise
role of posterior parietal cortex in semantic control remains un-
known. Here, we examined whether this region modulates at-
tention to goal-relevant features within semantic memory
according to the same principles that determine the salience
of task-relevant object properties during visual attention. Using
multivoxel pattern analysis, we decoded attentional referents
during a semantic judgment task, in which participants matched
an object cue to a target according to concrete (i.e., color,
shape) or abstract (i.e., function, thematic context) semantic
features. The goal-relevant semantic feature participants at-

tended to (e.g., color or shape, function or theme) could be
decoded from task-associated cortical activity with above-
chance accuracy, a pattern that held for both concrete and ab-
stract semantic features. A Bayesian confusion matrix analysis
further identified differential contributions to representing at-
tentional demands toward specific object properties across lat-
eral prefrontal, posterior temporal, and inferior parietal regions,
with the dorsolateral pFC supporting distinctions between
higher-order properties and the left intraparietal sulcus being
the only region supporting distinctions across all semantic fea-
tures. These results are the first to demonstrate that patterns of
neural activity in the parietal cortex are sensitive to which fea-
tures of a concept are attended to, thus supporting the contri-
butions of posterior parietal cortex to semantic control. ■

INTRODUCTION

Goal-directed behavior involves the controlled retrieval
of semantic memory, our conceptual knowledge about
sounds, actions, facts, objects, and word meanings. Sev-
eral studies with healthy participants and brain-lesioned
patients have revealed that semantic memory follows a
neural architecture that is organized by feature (e.g.,
color, shape, size, mode of manipulation) and distributed
across many sensorimotor cortical areas (Binder et al.,
2016; Yee & Thompson-Schill, 2016; Yee, Chrysikou, &
Thompson-Schill, 2014), with the potential contribution
of convergence regions within the anterior temporal cor-
tex that can distinguish among highly overlapping rep-
resentations (Martin, 2007; Patterson, Nestor, & Rogers,
2007; Chao & Martin, 2000). Among the most critical as-
pects of semantic cognition is the selective activation of
goal-relevant aspects of meaning (Miller & Cohen, 2001).
For example, when identifying a dime as an object that
can tighten a screw, it is only the dime’s small, flat shape
and ridged surface that are relevant to the achievement
of this goal; this information is highlighted during seman-
tic retrieval, relative to other stored knowledge about the
object that is not directly relevant to the task (e.g., that
the dime is silver, shiny, and worth $0.10).

Much research has investigated the neural mechanisms
that support the representation and selection of bottom–
up, goal-relevant features in semantic retrieval via top–
down modulation of feature-specific sensorimotor cortex
(Kan & Thompson-Schill, 2004). These studies have pri-
marily focused on an extended network of prefrontal and
posterior temporal regions implicated in semantic control
(Whitney, Kirk, O’Sullivan, Lambon Ralph, & Jefferies,
2011; Whitney, Grossman, & Kircher, 2009). Further-
more, prefrontal areas together with the left parietal cortex
(i.e., angular gyrus [AG], intraparietal sulcus [IPS]) are
thought to constitute a larger “multiple demand” network
that may support increased executive requirements irre-
spective of specific task demands (Duncan, 2010; Nagel,
Schumacher, Goebel, & D’Esposito, 2008; Dosenbach
et al., 2006; Owen, Schneider, & Duncan, 2000). Most of
these findings point to a critical role for the left ventrolateral
pFC (VLPFC) in semantic cognition, according towhich dis-
sociable systems within the left inferior frontal gyrus (LIFG)
support guided either semantic retrieval of information
from the posterior middle temporal cortex when semantic
associations are weak (anterior VLPFC) or postretrieval
semantic selection of goal-relevant features after the
activation ofmultiple competing representations (posterior
VLPFC; Nagel et al., 2008; Badre & Wagner, 2007; Badre,
Poldrack, Paré-Blagoev, Insler, &Wagner, 2005; Thompson-
Schill, D’Esposito, Aguirre, & Farah, 1997).University of Kansas
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Although the contributions of prefrontal cortical sys-
tems to semantic cognition are well established, much
less is known about the precise role of posterior parietal
cortex in semantic retrieval, despite the reliable recruit-
ment of this region during feature-based semantic con-
trol (Gardner et al., 2012; Whitney et al., 2011; Binder,
Desai, Graves, & Conant, 2009). A possible account for
posterior parietal cortex engagement in semantic cogni-
tion is its general role within the “multiple demand” ex-
ecutive network (Nagel et al., 2008); on the other hand,
the precise executive demands supported by this area
and its relationship with prefrontal regions during seman-
tic control are not well understood (Binder et al., 2009).
Substantial evidence suggests a critical role of posterior
parietal cortex in goal-directed attention in the visual do-
main (Bichot, Heard, DeGennaro, & Desimone, 2015;
Bisley & Goldberg, 2010; Corbetta & Shulman, 2002;
Kanwisher & Wojciulik, 2000), according to which left
posterior parietal and ventral temporal regions support
the top–down modulation of visual cortex activity, creat-
ing salience maps that allow for targeted and sustained
attention toward object features that are behaviorally rel-
evant. Recent work has revealed that activity in the left
IPS reflects increased attentional demands toward
context-dependent, task-relevant goals that alter the sa-
liency of different object representations during visual ob-
ject processing, thus warping the representational space
toward attended and away from unattended features
(Woolgar, Williams, & Rich, 2015; Harel, Kravitz, & Baker,
2014; Çukur, Nishimoto, Huth, & Gallant, 2013). Further
coordination between prefrontal and posterior parietal
regions imposes contextual biases during perception and
action that shift attentional priorities and guide behavioral
decisions according to particular internal goals and environ-
mental demands (Waskom, Kumaran, Gordon, Rissman, &
Wagner, 2014).
Despite its well-established role in goal-directed orient-

ing during visual perception as discussed above, whether
the involvement of lateral parietal cortex (especially the
IPS) in attentional control extends to semantic tasks
remains unknown. Past work has shown that, beyond
the overall contribution of inferior parietal cortex to in-
creased semantic selection and response demands
(Whitney et al., 2009; Nagel et al., 2008), patterns of ac-
tivity across different subpopulations of cells within this
region generate neural priority maps that represent goal-
relevant stimuli features not only according to spatial
(e.g., motion) but also along different, nonspatial (e.g.,
color) feature dimensions. Specifically, using multivoxel
pattern analysis (MVPA) in a visual attention task, Liu,
Hospadaruk, Zhu, and Gardner (2011) have shown that
such priority maps reflect a different distribution and or-
ganization of neural signals (or patterns of activity) in the
IPS depending on whether the participant is preferen-
tially attending to color or motion, differences that are
independent of the spatial location of the stimuli. It
has further been shown with a similar paradigm that the

anterior IPS can encode attentional priorities to chang-
ing gratings or features (i.e., color, orientation, spatial
frequency) within the same visual object (Liu, 2016).

Consistent with these results, interactions between
prefrontal and inferior parietal cortices may also guide
attention to goal-relevant object properties outside visual
perception, exerting analogous top–down influences on
attentional capture for task-relevant features within
semantic memory. When selection demands are high
and one has to focus on specific goal-relevant properties
of an item in semantic memory while discarding others
(e.g., a dime’s small, flat shape and rigid texture that
can be relevant for tightening a screw), frontoparietal
attentional networks have been proposed to act as a
mechanism for filtering out any goal-irrelevant semantic
features (e.g., the dime’s color or its value), even in the
absence of visual stimuli (Rissman & Wagner, 2012;
Serences, Ester, Vogel, & Awh, 2009). Consistent with a
semantic memory architecture according to which fea-
tures are distributed across many sensorimotor cortical
areas (Binder et al., 2016; Yee & Thompson-Schill,
2016), frontoparietal attentional networks, including the
dorsolateral PFC (DLPFC) and the IPS, can selectively
guide attention to task-relevant sensorimotor representa-
tions (e.g., an object’s color, shape, or size) according to
particular retrieval goals. Moreover, the same mecha-
nisms can bias attention to complex or abstract semantic
characteristics (e.g., an object’s function or the context in
which it is typically used) that match task-relevant atten-
tional priorities, and the representation of which is sup-
ported by the selective activation of particular neuronal
ensembles within a distributed semantic memory system
(Rissman & Wagner, 2012; Patterson et al., 2007). Accord-
ingly, the same attentional selection brain systems in-
volved in visual perception may similarly improve the
resolution of retrieved conceptual memories during se-
mantic control, thus sculpting the active representational
space toward goal-relevant variables that are needed for
performance (Yee & Thompson-Schill, 2016; Kan &
Thompson-Schill, 2004).

In line with this prediction, in this study, we employed
MVPA of brain activity during a semantic judgment task to
examine whether frontoparietal systems flexibly guide
attention to different conceptual properties during se-
mantic memory retrieval according to shifting attentional
templates that prioritize behaviorally relevant semantic
features. Participants were asked to match a cue word
denoting an object to a target on the basis of a specific
object property (i.e., color, shape, function, or thematic
context; Figure 1A). We hypothesized that, during
semantic control, frontoparietal cortical systems would
respond in a manner consistent with a biased competi-
tion model of visual attention (Desimone & Duncan,
1995), with the left posterior parietal cortex dynamically
modulating neural activity to accommodate attentional
shifts across both concrete (i.e., color, shape) and ab-
stract (i.e., function, or thematic context) goal-relevant
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semantic features and the left DLPFC regulating attention
toward higher-order (i.e., concrete vs. abstract) property
distinctions. We used MVPA to decode the neural signa-
tures associated with participants prioritizing particular
goal-relevant semantic features during the semantic deci-
sions task. In addition, we employed a novel Bayesian
confusion matrix analysis (Olivetti, Greiner, & Avesani,
2012; Olivetti, Veeramachaneni, & Nowakowska, 2012)
to examine differential neural encoding of attentional
referents among frontoparietal and posterior temporal
regions.

METHODS

Participants

Twelve (n = 12) right-handed native English speakers
(five women, mean age = 25 years) participated in the
study for $50 in compensation. Participants were recruited
from the University of Kansas Lawrence andMedical Center
campuses from a pool of volunteers who indicated an
interest in participating in neuroimaging studies. All partic-
ipants reported no neurological disorders or history of
neurological illness. Three additional participants were
included in the experiment; however, their data were

excluded from all analyses because of excessive head
movement (displacement greater that one voxel width)
over the course of the scanning session. Informed
consent was obtained for each participant before the
experiment, in accordance with the guidelines of the
University of Kansas Medical Center institutional review
board.

Stimuli and Task

A semantic judgment task was used to examine the neu-
ral mechanisms that allow for decisions of semantic relat-
edness based on a specific, goal-relevant item property
(Whitney et al., 2011; Badre et al., 2005; Thompson-Schill
et al., 1997). Four item properties, or features, were se-
lected from within two larger categories of concrete (or
physical) properties and abstract (or amodal) properties.
Shape and color were selected as concrete item proper-
ties. Function and theme were selected as abstract item
properties. Function was defined broadly to refer to what
an item is used for, whereas theme was defined as the
typical context or environment that an item is found in
(Figure 1A). The task followed a cue–target–distractor
paradigm. In each trial, participants were instructed to
view a cue word, which referred to an object. They then
selected the response that best matched the cue along a
given property, from a set of two response options. For
example, if the property of interest was “shape,” then the
cue object could be “pillow,” with response options of
“ravioli” and “blanket.” In this case, the correct answer
would be “ravioli” because it matches the cue with re-
spect to shape. The distractor stimulus was overall se-
mantically associated with the cue but not along the
property relevant to the trial. Seventy-four stimulus trip-
lets of the kind discussed above were created for each of
the four properties considered. For the neuroimaging
study, an identity task, wherein both the cue and re-
sponse options consisted of repeats of a single character
(e.g., XXXXX), was also included to act as a baseline task.
Participants simply selected the response letter string
that was identical to the cue.

Stimulus Preparation

Stimuli triplets were matched for word length (mean num-
ber of syllables per word) across conditions (color = 1.74,
shape = 1.62, function = 1.68, theme = 1.57). Stimuli
triplets were further matched on word familiarity (mean
rating: color = 528.50, shape = 541.03, function =
533.43, theme = 545.34) across conditions according to
the norms obtained from the Medical Research Council
psycholinguistic database (Coltheart, 1981, www.psych.rl.
ac.uk). The differences between conditions across these
measures were not statistically significant (all ps > .10).
Because of the nature of the semantic judgment task,
stimuli were not matched on imageability according
to the Medical Research Council database norms (mean

Figure 1. Experimental paradigm. (A) Sample semantic judgment tasks
for each of the four object features presented in this study (color,
shape, function, and theme). Seventy-four unique semantic judgment
tasks were created for each object feature, for a total of 296 stimuli.
(B) Sequence of events in a single block. The task-relevant feature
was presented for 6 sec before stimulus onset to ready participants
for the task, followed by a fixation cross to cue the onset of semantic
judgment tasks. Each trial was presented for 3 sec, followed by a
0.5-sec fixation cross. Six trials were presented in each block, followed
by 14 sec of rest to complete the block. Each of the 12 runs was
composed of one block for each semantic feature of interest.
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rating: color = 592.91, shape = 581.47, function = 574.94,
theme = 572.74); specifically, color stimuli were more im-
ageable relative to function ( p= .02) and theme ( p= .01)
stimuli. No other differences in imageability were statisti-
cally significant (all ps > .23). To quantify the strength of
the relatedness of cue–target and cue–distractor pairs with
respect to the property they were associated with in the
behavioral task, an independent group of participants from
the University of Kansas undergraduate population (n= 40,
15 men, mean age = 20 years) were asked to rate how well
stimuli were related along their intended features. Partici-
pants performed the rating task online using Qualtrics
(Qualtrics, Provo, UT) for class credit. Participants judged
the level of relatedness along that property on a 7-point
Likert scale, ranging from “not at all related” to “identical.”
Results of this norming procedure showed that partici-
pants found cue–target pairs to be significantly more
closely related along the relevant property (M = 4.95,
SD = 0.71) relative to the cue–distractor pairs (M =
3.66, SD = 0.97), Welch’s two-sample t(592) = 18.42,
p < .001. This trend held within each property set. In
addition, participants were presented with cue–target pair-
ings and were asked to select which of the five properties of
interest the two objects were related by, with a sixth “none
of the above” option included as well. A higher proportion
of respondents chose the intended feature as the feature by
which cue and target were best related (M= 55.10%, SD=
3.58%) significantly more than any other single feature
(M = 9.05%, SD = 0.70%; t(302) = 11.31, p < .001).
Although we employed a block fMRI design with the

aim to limit stimulus-specific effects, to ensure that our
stimuli would elicit decisions of semantic relatedness
based on attention to specific object properties (relative,
e.g., to more global, semantic associations), we present-
ed all stimulus triplets to an independent group of partic-
ipants (n = 57, mean age = 19.52 years, 21 men). Half of
the participants (n = 28) were simply asked to select
which of the two response options (e.g., “ravioli” and

“blanket”) best matched the cue word (e.g., “pillow”)
overall. Reflective of our experimental task, the other half
of the participants (n= 29) were asked to select which of
the two response options (e.g., “ravioli” and “blanket”)
best matched the cue word (e.g., “pillow”) with respect
to a specific given property (e.g., shape). Participants per-
formed the rating task online using Qualtrics for class
credit. We measured the percentage of responses in
which participants selected the distractor response over
the property-matched response by the property of in-
terest. The difference in the percentage of distractor
responses selected within each property type was
assessed with logistic regression, with the fraction of dis-
tractors selected as the dependent variable and the ex-
perimental group as the independent variable. In the
absence of instructions to focus on an object property,
participants selected the distractor as the correct answer
significantly more often (77%) than they did when the
object property was given (41%; t(32.86) = 9.52, p <
.001, Cohen’s d = 2.50; see Table 1), which confirmed
the suitability of our experimental task to elicit attention
to specific object properties as opposed to global semantic
associations.

Design and Procedure

Before the scanning session, participants were presented
with example stimuli for each semantic property they
would be asked to consider during the semantic judg-
ment task (i.e., color, shape, function, and theme) and
were given an opportunity to familiarize themselves with
the operational definitions of those object properties as
used in this study (e.g., function was defined broadly to
refer to what an object is used for; theme was defined as
the typical context or environment that an object is found
in). Example stimuli used during this practice session
were presented in the same format as they would be in
the scanner, and participants were provided with feedback

Table 1. Behavioral Results from Norming Study Showing the Effect of the Property-specific Instructions on Distractor Selection

Color Shape Function Theme

% Distractor Selected (SE)

Global task (n = 29) 78.33 (4.41) 78.15 (4.09) 77.91 (3.58) 71.81 (3.23)

Property task (n = 28) 22.97 (3.30) 23.65 (2.72) 48.94 (1.35) 68.68 (2.35)

Main Effect of Feature Direction on Distractor Selection

t statistic (df = 56) −33.73 −33.28 −19.13 −2.223

p value <.001 <.001 <.001 .10

t statistics corresponding to the main effect of task type from the logistic regression and associated Bonferroni-corrected p values are presented in
addition to response percentages. Participants who did not receive instructions to focus on any specific property but performed overall or global
similarity judgments chose the distractor significantly more so than participants who received the property-specific instructions at p < .001, for color,
shape, and function. The difference was not statistically significant for theme; however, this finding is not unanticipated given that this object prop-
erty is compatible with the general context in which the object is found.
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on their responses to each trial to ensure that they under-
stood the nature of the task.

Participants were scanned over 12 short runs within
one scanning session. The semantic judgments were per-
formed in blocks to allow any individual stimulus-specific
effects to be averaged out of the analysis and maximize
sensitivity to the attentional demands directed toward a
specific object feature (Figure 1B). Each trial type (color,
shape, function, or theme) was administered within one
block per run. For each block, six stimulus sets were
randomly selected without replacement from the list of
stimulus sets for each property. Each block began with
a 2-repetition time (TR; 7 sec) display informing partici-
pants of the nature of the task in the next block, followed
by six trials, 3.5 sec each. Each trial was composed of a
cue word and two response options. The trial type was
also displayed at the top of the screen throughout the
block to limit working memory demands for the mainte-
nance of trial type for each block. Participants had 3 sec
to select the correct response, which was the option that
matched the cue word with respect to the trial-relevant
property (color, shape, function, or theme). Each trial
was followed by a 500-msec fixation. Four TRs (14 sec)
of rest were included in between each block to allow
for hemodynamic response normalization before the be-
ginning of the new block. Block order was randomized
within each of the 12 runs. Stimuli were designed and
displayed using E-Prime 2.0 (Psychology Software Tools,
Pittsburgh, PA), and they were presented against a gray
background to decrease eyestrain over the 1.5-hr-long ex-
perimental session. Participants viewed the stimuli via a
mirror reflecting each stimulus frame as it was projected
onto a screen located in the back of the scanner. Partic-
ipants indicated their response to each question by press-
ing one of two buttons with either the index or middle
finger of the left (nondominant) hand, with the correct
response buttons counterbalanced within and between
blocks. E-Prime was used to record participant responses.

fMRI Data Acquisition

Participants were scanned using a Siemens (Erlangen,
Germany) 3-T Skyra MRI scanner at the Hoglund Brain
Imaging Center at the University of Kansas Medical Center
campus, using a 12-channel surface coil. Functional scan-
ning was divided into 12 runs, each consisting of 96 ac-
quisitions (image matrix = 70 × 64, slice number = 54,
repetition time = 3500 msec, echo time = 25 msec,
flip angle = 40°, slice thickness = 3 mm, with 3 × 3 mm
in-plane resolution). A high-resolution (1 × 1 × 1 mm3)
T1-weighted magnetization prepared rapid gradient echo
sequence was acquired at the beginning of the session
(sagittal slice orientation, centric phase encoding, image
matrix = 256 × 256 mm, 176 slices with 1-mm thickness,
repetition time = 2300 msec, echo time = 2.01 msec,
TI = 900 msec, 9° flip angle).

Data Preprocessing and Univariate Analysis

All preprocessing and univariate analyses were per-
formed with the FMRIB Software Library (FSL) Version
5 (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,
2012; Woolrich et al., 2009; Smith et al., 2004). The first
four volumes of each run were discarded to allow for the
magnetic field to reach a steady state. Per-run data were
first corrected for head motion and registered to the first
run using the MCFLIRT motion correction tool (Jenkinson,
Bannister, Brady, & Smith, 2002), followed by slice timing
correction using Hanning-windowed sinc interpolation,
before each voxel was high-pass filtered at 126 sec to
remove low-frequency signal drift. Functional images were
registered to the high-resolution anatomical image using a
boundary-based registration implemented within FSL’s
FLIRT (Jenkinson et al., 2002), and anatomical images were
registered nonlinearly to the Montreal Neurological Insti-
tute (MNI) 2-mm template brain using FNIRT within the
FSL package (Andersson, Jenkinson, & Smith, 2007).
A general linear model was used to derive per-run

activity estimates for each voxel. One hemodynamic
response predictor was calculated for each block, based
on the convolution of a single boxcar function corre-
sponding to the duration of each block with a double-
gamma hemodynamic response function. The preparatory
phase of each block was included as a regressor of no
interest, along with RTs. Additional confound regressors,
corresponding to individual volumes corrupted by exces-
sive motion as calculated by FSL Motion Outliers, were in-
cluded. Motion outliers were calculated by taking the root
mean square intensity difference between each volume
and the following volume (Power, Barnes, Snyder,
Schlaggar, & Petersen, 2012), with threshold for exclusion
calculated via the boxplot method, where outliers were
defined as those volumes with root mean square intensity
differences greater than the 75th percentile plus 1.5 times
the interquartile range. The resulting beta estimates were
divided by their standard error to yield maps of t statistics,
quantifying each voxel’s activity to each condition. t statis-
tics were chosen to maximize sensitivity to voxel-wise
patterns across blocks, while simultaneously de-weighting
noisy voxels (Misaki, Kim, Bandettini, & Kriegeskorte,
2010). This procedure was repeated for each run, resulting
in 12 sets of t statistic images, corresponding to voxel
activity for each of the object properties used to guide
judgments of semantic similarity in each run.

Multivariate Searchlight Analysis

A cortical mask was constructed in native space using the
automatic parcellation calculated during FreeSurfer re-
construction (Desikan et al., 2006; Fischl, 2004). Subcor-
tical structures, including the brain stem and cerebellum,
were excluded, isolating cortical structures and white
matter. A spherical searchlight (SL) with a radius of four
voxels was moved across a participant-specific cortical
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mask, voxel by voxel, and activity patterns were extracted
from within SL ROIs for each stimulus presentation block
(Kriegeskorte, Goebel, & Bandettini, 2006). SL ROIs were
further refined by their intersection with the whole brain
mask, ensuring that only cortical voxels (including both
gray and white matter) were included in the analysis. Pat-
terns from within each SL ROI were tested for the pres-
ence of information via multivariate analysis. The choice
of a four-voxel SL ROI was chosen to ensure that an ad-
equate amount of useful information was included to
maximize pattern discrimination, while avoiding overfit-
ting due to the high dimensionality of the feature space
associated with larger SL sizes. We tested both a three-
and five-voxel SL on the four-way analysis, which pro-
duced qualitatively similar maps; the four-voxel analyses
produced the greatest number of separate clusters after
thresholding. The three-voxel SL produced comparable
results, whereas the five-voxel SL created a sufficiently
diffuse map in which single clusters were large and often
covering much of the cortical surface, thus precluding
the identification of discrete SL ROIs. The four-voxel
radius SL presented the proper balance of sufficient local
information and discrete spatial localization.
Classification was performed using a linear support

vector machine (SVM) with a trainable c term (scaled
within each training set in accordance with the norm of
the data), within a leave-one-out cross-validation scheme
across all 12 runs. Each run acted in turn as the testing
set, whereas the remaining runs were used for training
the SVM. We chose the linear SVM because it appears
to perform as well as, if not better than, other classifiers
in neuroimaging, especially in cases where the number of
samples is relatively small (Mahmoudi, Takerkart, Regragui,
Boussaoud, & Brovelli, 2012; Misaki et al., 2010; Mur,
Bandettini, & Kriegeskorte, 2008). Leave-one-out cross-
validation was carried out on the four-way discrimination
of the semantic task attentional referent (i.e., shape,
color, function, or theme) simultaneously, with accuracy
calculated within each fold. Accuracies were then aver-
aged across folds and assigned to the central ROI voxel
to produce participant-specific informationmaps. To assess
the importance of multivariate patterns for classification
accuracy, we used a univariate version of the multivariate
SL. To accomplish this, the mean activity was taken across
all voxels with each SL ROI, andmean activationwas used as
the single factor driving classification within the linear SVM.
We also performed a version of the multivariate SL in which
features were mean-centered within each trial, removing
any contributions of mean activation and retaining only
pattern information. The per-SL accuracy maps associated
with the univariate and mean-centered analyses were then
entered into the second level analysis as described below.
The rationale for this approach was to show that (1) univar-
iate effects do not achieve comparable decoding accuracy
and (2) mean-centered data still retain sufficient informa-
tion to support above-chance decoding accuracy; thus,
through these analyses, we can verify that we have identi-

fied a region that encodes task-relevant information in
patterns of cortical activity (Coutanche, 2013).

To identify areas that consistently encode attention to
task-relevant semantic information across participants,
participant-specific information maps from the first level
analysis were entered into a second-level analysis, the
purpose of which was to detect regions that supported
above-chance decoding accuracy across our study popula-
tion. This procedure was implemented for the multivariate
analysis, the univariate analysis, and the mean-centered
multivariate analysis. To exploit undistorted high-frequency
spatial information, all analyses were carried out in native
space without any smoothing. The information maps
were then registered to MNI space using a nonlinear
transformation and tested for above-chance information
content (accuracy > chance) using a nonparametric
voxel-wise one-sample t test across participants (Winkler,
Ridgway, Webster, Smith, & Nichols, 2014). The null dis-
tribution was obtained via exhaustive (n = 212) sign-flip
permutation testing. A conservative voxel-wise threshold,
based on the distribution of the maximum test statistic
across all permuted images, was used to correct for mul-
tiple comparisons to maximize specificity to highly signif-
icant regions, with a family-wise error (FWE) corrected at
p < .05 (Holmes, Blair, Watson, & Ford, 1996). All multi-
variate analyses were carried out using the MVPA in
Python package (Hanke et al., 2009). Preprocessing and
statistical testing of information maps were carried out
using the FSL (Jenkinson et al., 2012). FreeSurfer was
used for the surface reconstruction of the MNI standard
brain, and both FreeSurfer and PySurfer (Ramachandran
& Varoquaux, 2011, pysurfer.github.io) were used for
visualization of information maps on the MNI brain
surface.

Property-specific SL Analysis

To assess those regions that supported the higher-level
distinction in establishing attentional priorities between
abstract and concrete properties, a property-specific SL
analysis following the same protocol outlined in the
information-based mapping analysis section above was
used to construct separate information maps specific to
above-chance classification of color versus shape proper-
ties, function versus theme properties, and concrete
(color and shape combined) versus abstract (function
and theme combined) properties. The abstract versus
concrete distinction was established by separately averag-
ing across samples for each property within the higher-
order classes, within each run. Each of these information
maps was entered into a group level, nonparametric one-
sample t test relative to chance classification (accuracy >
0.50), as above. Thresholding was performed with the
same voxel-wise correction method used in the four-way
SL analysis. However, this conservative method failed to
yield any significant activation in the function versus theme
classification, so a less restrictive cluster-mass-based
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threshold was used, with cluster significance determined
by the null distribution of cluster size across all permuta-
tions and a cluster forming threshold, F, of 2.3 (Nichols
& Holmes, 2002).

Bayesian Confusion Matrix Analysis

A limitation of the classification accuracy approach in
MVPA is that, in a multiway classification scheme such
as the one employed in this study, above-chance discrim-
ination could hypothetically be driven by exceptional
classification of any one category, any subset of catego-
ries, or all categories equally. We used Bayesian confu-
sion matrix analysis post hoc to address this limitation
and evaluate in detail the confusion patterns within the
four-way classification (Olivetti, Greiner, et al., 2012). In
a Bayesian confusion matrix analysis, the contribution of
each possible category pattern to multinomial classifica-
tion performance constitutes a hypothesis (Hi). The
posterior probability p(Hi|C) represents the likelihood
that a given hypothetical set of category patterns (Hi)
drove classification given the observed relationship be-
tween predicted and true category labels arising from
the classification. Specifically, the confusion analysis
works by quantifying the statistical independence be-
tween true class labels and predicted class labels during
the multinomial classification (Olivetti, Veeramachaneni,
et al., 2012). In the case of perfect classification, predicted
class labels are statistically dependent on true classes. If
only a subset of classes are driving classification, then only
part of the predicted class labels will be dependent on
true class labels, whereas the remaining classes will show
statistical independence. Given true and predicted class
labels in the form of a confusion matrix, the probability
that full dependence exists between predicted and true
classes can be assessed with Bayesian methods, as can
the probability of any arbitrary partially independent pat-
tern. The Bayesian confusion matrix analysis does not rely
on the detection of stronger decoding for comparison
across brain regions, thus offering the possibility of an
unbiased examination of differing patterns of coding of
attentional referents across different regions in this study.
An additional benefit of the Bayesian approach, relative to
simple classification accuracy, is that, within the Bayesian
analysis, all properties and their higher-order combina-
tions can be examined simultaneously, whereas in the
simple property-based analysis discussed above, informa-
tion maps specific to above-chance classification of prop-
erties were constructed separately (i.e., color vs. shape
properties, function vs. theme properties, and concrete
vs. abstract properties).

Participant-specific Cluster Processing

The implementation of the Bayesian confusion analysis
requires per-cluster confusion matrices from a participant
level classification analysis. To obtain these clusters,

SL-based ROIs were defined by projecting significant group
level clusters from MNI space back into the native space of
each participant using previously calculated transforma-
tions. These cluster-defined masks were then dilated using
a spherical kernel equal in radius to the original SL ROI
(four voxels) to ensure each cluster contained all voxels as-
sociated with the original SL ROIs. These expanded clusters
were then entered into a participant level classification
analysis to yield the per-cluster confusion matrices
required for the Bayesian confusion analysis, and features
for each cluster were mean-centered within conditions to
rule out any contribution of univariate effects.
The classification procedure used to generate the per-

cluster confusion matrices employed a linear SVM classi-
fier within a leave-one-out cross-validation scheme, as
implemented in the SL. However, unlike in the SL analy-
sis and its fixed cluster radius, participant-specific clusters
varied in size both across participants and clusters, with
some clusters containing as many as 600 voxels. To pre-
vent overfitting in larger clusters and normalize the infor-
mation content driving the Bayesian confusion analysis, a
voxel-based feature selection strategy was employed.
Within each fold of the cross-validation, each voxel-based
feature was assigned an F statistic to quantify variability
between conditions based on the data within the training
set. To select voxel-based features for testing within the
fold without making an arbitrary selection of feature
number, features were eliminated iteratively within the
training set, followed by a nested cross-validation step
to assess the classification performance associated with
each iteration. The five voxel-based features with the
lowest F statistic were discarded at each iteration step,
followed by an updated assessment of classification accu-
racy within the training set. This procedure was carried
out until the number of voxel-based features remaining
reached 75. The feature set associated with the highest
classification performance in the nested cross-validation
was then used to assess classification accuracy based on
classification of the testing set associated with the fold
(Pereira, Mitchell, & Botvinick, 2009). The feature selec-
tion process was carried out only on the training data
within each fold, ensuring no circularity during the
within-participant feature selection step. Results of the
classification were saved as confusion matrices at the per-
participant level for use in the Bayesian confusion analysis.
We also report the mean decoding accuracy associated
with the per-cluster classification analysis.

Bayesian Confusion Analysis

When implementing the Bayesian confusion analysis, an un-
informative prior probability was assigned to each of the 15
possible patterns of statistical dependencies, p(Hi) = .067.
Probabilities associated with each confusion pattern were
updated one participant at a time, with the updated assess-
ment of probability resulting from a participant’s confusion
pattern being used as the prior probability for the next
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participant. This strategy allowed us to take advantage of
the Bayesian framework’s ability to update posterior proba-
bility estimates with each additional piece of information.
This resulted in a sample level estimation for the most likely
pattern of dependence in each SL-based cluster. The order
in which participants are entered does not have an effect on
this analysis and was determined randomly. We extracted
the posterior probabilities associatedwith four possible con-
fusion patterns considered relevant to this study: perfect sta-
tistical dependence, partial dependence between abstract
properties only, partial dependence between concrete
properties only, and partial dependence between concrete
and abstract properties. Note that dependence between
abstract properties only or dependence between concrete
properties only implies that the classifier can distinguish
between abstract and concrete object properties as
higher-order categories, as those models are implicitly
nested within the higher-order distinction. The hypothesis
that can explain the maximum statistical dependence be-
tween actual and predicted labels is given priority in the
assessment of posterior probability. No other pattern of
partial dependence was found to be likely given the data,
p(Hi|C) < .001, so the remaining confusion patterns, in-
cluding total statistical independence (no pattern discrimi-
nation), were aggregated into a null category by summing
across their posterior probability estimates together to yield
the null posterior probability, which represented the poste-
rior probability associated with the hypothesis that no rele-
vant confusion pattern existed in our participant population.

Variability in Bayesian Estimation

A limitation of this novel Bayesian approach to assessing
class contributions to classifier performance is an inability
to directly quantify the uncertainty in the estimate or the
extent to which an outlier participant might influence the
data. We therefore performed an ad hoc jackknife resam-
pling procedure to enable us to estimate the stability of
the posterior probability estimates for each hypothesis
within each ROI. Jackknife resampling is known to be a
general tool to estimate variance and bias in a wide range
of situations; as such, it was the most appropriate tool for
obtaining readily interpretable variance estimates in this
analysis. To this end, the data from each participant in
turn were excluded from the Bayesian analysis; final pos-
terior probabilities for each pattern of class contribution
to decoding performance were calculated as the average
of the posterior probabilities estimated after excluding
each participant in turn from the analysis. The standard
error of the estimates was calculated by taking the sum of
the squared deviations of each resampled parameter es-
timate from the mean resampled estimate, multiplied by
a correction factor tied to sample size:

Var xð Þ ¼ n−1
n

Xn

i¼1

�xi−�xMð Þ

where n is the sample size, �xi is the parameter estimate
without the ith sample included, and �xM is the mean of all
�xi or the jackknife estimate of the parameter (Efron &
Stein, 1981). The square root of this value was then taken
to yield a standard error measure, rather than variance.
We note that the variance estimates derived from this
procedure are more useful as qualitative indications of
stability in the Bayesian estimation than for any purely
quantitative interpretation.

RESULTS

Behavioral Results

Mean RT for the semantic judgment task was 1897.89 msec
(SD = 170.25 msec; Table 2). RTs differed significantly
among conditions, F(1.44, 15.81, Greenhouse–Geisser
correction) = 10.31, p = .003; post hoc comparisons
(Bonferroni correction) revealed higher RTs in the shape
condition relative to the color ( p < .001), function ( p =
.004), and theme ( p = .02) conditions. No other compar-
isons reached statistical significance (all ps > .23). Perfor-
mance accuracy for the task was 83% (SD = 0.07%;
Table 2). Accuracy also differed significantly among condi-
tions, F(1.88, 20.7, Greenhouse–Geisser correction) =
20.34, p< .001; post hoc comparisons (Bonferroni correc-
tion) revealed lower accuracy for the theme condition
relative to the color ( p < .001), shape ( p = .001), and
function ( p = .02) conditions. No other comparisons
reached statistical significance (all ps > .39). The fMRI
analysis included RTs as regressors of no interest.

Multivariate SL

We used an SL with a four-voxel radius to measure local pat-
terns for strength of discrimination, on the basis of which
object property (i.e., shape, color, function, or theme)
participants were asked to attend to in making their
semantic similarity judgments. Individual information maps
were submitted to a nonparametric one-sample t test to
identify regions that support above-chance classification
(accuracy > 0.25) across all participants (Figure 2A).

Table 2. Behavioral Results across Stimulus Conditions from
the Neuroimaging Study

Condition

RT (msec) Proportion Accuracy

M SD M SD

Color 1856 185 0.88 0.07

Shape 2004 164 0.86 0.06

Function 1882 172 0.84 0.07

Theme 1850 160 0.74 0.10

RT for shape was significantly higher than the other properties, and
accuracy for theme was significantly lower than the other properties
( p < .05).

Hanson and Chrysikou 1185



SL mapping revealed nine clusters sensitive to goal-
relevant object properties (Table 3): two located in the
left IPS, two located in the left DLPFC, one in the poste-
rior LIFG centered in the pars opercularis, one in the left
posterior middle temporal gyrus (pMTG) extending into
the posterior IFG, one located in the left superior frontal
gyrus (SFG), one located in the right IPS, and one within
the right DLPFC. Although multivariate patterns and uni-
variate effects need not to be mutually exclusive, to en-
sure that our findings were primarily due to multivariate
factors and not univariate changes in average activity
within SL ROIs, we repeated this analysis using per-
sample mean activity within each SL ROI as the sole fea-
ture guiding classification, following the same procedures
used for the multivariate SL. The results of this analysis
showed univariate-driven clusters in the left frontal pole
and left OFC as well as clusters that minimally overlapped
with multivariate-driven clusters in the left pMTG and left
DLPFC (Table 4), hence supporting the significance of
multivariate pattern information over univariate changes
for the encoding of attention to goal-relevant object
properties in the IFG and IPS. The importance of multi-
variate information for classification was further rein-
forced by the results of a mean-centered SL analysis, in

which features extracted by the SL kernel were mean-
centered within each condition before classification.
The clusters identified in this SL analysis were qualita-
tively indistinguishable from the standard SL, with the
same clusters identified (see Figure 2B).

Property-specific SL Analysis

To observe areas that may participate directly in the neu-
ral encoding of information pertinent to within-category
property discrimination, we employed SL analyses spe-
cific to distinctions between concrete properties (i.e.,
color vs. shape), abstract properties (i.e., function vs.
theme), and higher-order property categories (i.e., con-
crete [color and shape together] vs. abstract [function
and theme together] properties), following the same SL
analysis procedure outlined above. To minimize influ-
ences from univariate effects, which were shown to par-
tially guide classification in the multivariate SL analysis, all
samples were mean-centered across voxel-based features
within each SL ROI before classification. Statistical signif-
icance was determined at alpha = .007, two-tailed
(Bonferroni correction). The results of the group level in-
formation maps showed that the same areas identified in

Figure 2. Group-level
information maps based on
task-relevant object properties.
These maps were established
using an SL with a radius of
four voxels and represent the
discriminability of goal-relevant
semantic properties during
the semantic judgment task.
(A) This light box view shows
each significant cluster in the
four-way analysis. The slices
represent the peak sensitivity
of the seven clusters identified
in that analysis. Voxel-wise
FWE-corrected p < .05. (B)
A surface projection of the
four-way analysis presented in
A has been included to facilitate
comparisons between the
four-way analysis and the
property-specific SL analyses.
In addition, multivariate SLs
with raw (red heat map) and
mean-centered (blue heat
map) features are presented
in conjunction. Areas of
overlap are presented with
a purple heat map. This
conjunction shows the
importance of multivariate
patterns to classification,
over univariate information.
As in A, only significant
clusters are shown after
correction of the voxel-wise
FWE at p < .05.
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the four-way SL were largely present when considering
each of the specific property categories (Figure 3). The
results of these property-specific SLs are also presented,
along with per-cluster decoding accuracy, in Table 5.
Areas sensitive to concrete item properties (shape vs.

color) were identified in the left pMTG (x = −44, y =
−56, z = 0; 383 voxels; peak t value = 17.7) and left
IPS (x=−48, y=−34, z= 38; 263 voxels; peak t value =
16.6; all coordinates are reported in MNI 152 nonlinear
template space). The abstract property SL failed to yield
significant results after the conservative voxel-wise
correction for multiple comparisons; however, a more
permissive corrected cluster-based threshold (F = 2.3,
pcorr < .05) revealed a network within the posterior
parietal cortex, including the left IPS, that was sensitive
to the distinction between abstract properties (function
vs. theme; Figure 3B). Specifically, areas sensitive to ab-
stract item properties (function vs. theme) were identi-
fied in the left IPS (x = −36, y = −50, z = 44; 1744
voxels; peak t value = 5.86), left superior parietal lobe
(x = −28, y = −54, z = 60; 438 voxels; peak t value =

5.67), right lateral occipital cortex (x = 30, y = −66, z =
28; 333 voxels; peak t value = 5.65), and cuneus
bilaterally (x = −2, y = −78, z = 26; 1694 voxels; peak
t value = 8.98). Areas sensitive to concrete versus ab-
stract item properties were identified: left AG (x =
−46, y = −60, z = 30; 3000 voxels; peak t value =
21), left pMTG (x = −52, y = −46, z = 2; 1407 voxels;
peak t value = 22.9), left (x = −34, y = 18, z = 58; 1386
voxels; peak t value = 14.6) and right (x = 38, y = 18,
z = 44; 477 voxels; peak t value = 14.5) DLPFC, left pre-
cuneus (x = −10, y = −68, z = 40; 476 voxels; peak
t value = 13.4), and right IPS (x = 41, y = −54, z =
42; 297 voxels; peak t value = 14.9). According to these
results, the left IPS was the single region that was sensi-
tive to distinctions in attention within both concrete
(color vs. shape) and abstract (function vs. theme) item
properties but not higher-order properties (abstract vs.
concrete properties). In contrast, clusters in the right
and left DLPFC were present for the higher-order cat-
egory level (i.e., abstract vs. concrete properties) classifi-
cation map (Figure 3C) but not for the concrete (color vs.
shape; Figure 3A) or the abstract (theme vs. function;
Figure 3B) classification maps.1 Overall, the results of
the property-specific SL analysis were in line with those
of the multivariate SL analysis, establishing the differen-
tial contribution of frontoparietal regions to different
aspects of feature-based semantic control.

Bayesian Confusion Matrix Analysis

The results of the Bayesian confusion matrix analysis re-
vealed that the left pMTG, the left IFG, and the left SFG
were maximally sensitive to the distinction between the
concrete properties (i.e., color vs. shape; p(Hi|C) = 0.99,
SE= 0.01, for the left pMTG; p(Hi|C) = 1.00, SE< 0.001,

Table 3. Areas Sensitive to Object Properties during the Semantic Judgment Task in the Multivariate SL Analysis, Along with the
Decoding Accuracy within Each Cluster

Region

Coordinates (Peak) in mm

Voxels Peak t Value Decoding Accuracy (SE)x y z

L IPS, posterior −46 −66 30 1164 18.1 0.62 (0.03)

L IPS, anterior −36 −38 38 20 11.2

R IPS 32 −46 48 27 10.6 0.33 (0.01)

L SFG −24 16 58 132 15 0.40 (0.03)

L DLPFC, anterior −36 26 38 123 14.5 0.39 (0.02)

L DLPFC, posterior −44 8 58 75 14.6

R DLPFC 42 14 34 135 15.3 0.36 (0.02)

L IFG −40 10 24 75 11.1 0.46 (0.03)

L pMTG −46 −52 4 1040 15.6 0.57 (0.03)

These areas are the left and right IPS, left SFG, left and right DLPFC, left IFG (pars opercularis), and the left pMTG. Coordinates are presented in MNI
152 nonlinear template space. L = left; R = right.

Table 4. Areas with Univariate Patterns of Activity Sensitive to
Object Properties during the Semantic Judgment Task

Region

Coordinates (Peak) in mm

Voxels Peak t Valuex y z

L pMTG −64 −50 0 37 6.77

L DLPFC −32 16 54 28 6.38

L FP −42 52 2 49 6.93

L OFC −50 32 −14 33 7.02

These areas are the left pMTG, left DLPFC, left fontal pole (FP), and left
OFC. Coordinates are presented in MNI 152 nonlinear template space.
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for the left IFG; and p(Hi|C) = .85, SE = 0.27, for the left
SFG), whereas the left DLPFC was maximally sensitive to
the distinction between abstract (i.e., function and theme
together) versus concrete (i.e., color and shape together)
higher-level categories, p(Hi|C) = .88, SE= 0.20, while
confusing exact property distinctions within these cate-
gories (i.e., color vs. shape, function vs. theme). The left
IPS was equally sensitive to the distinction between con-
crete properties only, p(Hi|C) = .56, SE = 0.62, and the
distinction across all properties, p(Hi|C ) = .44, SE =
0.62. Table 6 presents the posterior probabilities and
error estimates for each hypothesis within each mask.
The right DLPFC and right IPS did not seem to encode
any semantic property distinction consistently across
participants, p(Hnull|C) > .99.

Relative to the simple classification accuracy SL analy-
ses discussed above, the Bayesian approach allowed us to
examine all four attentional referents (i.e., color, shape,

function, and theme) and their higher-order combina-
tions (color and shape, function and theme) simulta-
neously, without artificially altering the representational
space of the data by separately constructing maps specific
to the above-chance classification of properties. Overall,
the results of the Bayesian confusion matrix analysis re-
vealed that only the left IPS was equally likely to contrib-
ute to the discrimination between basic (color vs. shape)
and higher-order (concrete vs. abstract) item properties,
whereas only the left DLPFC was sensitive to the distinc-
tion between higher-order (concrete vs. abstract) item
properties, thus clarifying the results of the SL analyses
(Figure 4).

DISCUSSION

Despite their importance for several aspects of goal-directed
behavior, the neural mechanisms supporting attention to

Figure 3. Group classification maps for property-specific classifications
of (A) concrete properties (i.e., color vs. shape), (B) abstract properties
(i.e., theme vs. function), and (C) higher-order property category
(i.e., concrete vs. abstract). Both A and C have been corrected for
multiple comparisons using a voxel-wise correction based on the
distribution of the max statistic across permutations; for B, a more
liberal, cluster-based threshold (cluster-forming threshold, F = 2.3) was
used. Maps represent classification accuracy for multivariate data
with mean activity for each sample removed, ensuring that the
classification does not include any effects of univariate activation.

Table 5. Areas with High Decoding Accuracy for Specific
Property Pairs, in the Post Hoc Two-Way Classification SL
Analysis, Along with the Decoding Accuracy within Each Cluster

Region

Coordinates
(Peak) in mm

Voxels
Peak
t Value

Decoding
Accuracy

(SE)x y z

Color vs. Shape

L pMTG −44 −56 0 383 17.7 0.79 (0.02)

L IPS −48 −34 38 263 16.6 0.77 (0.02)

Theme vs. Function

L IPS −36 −50 44 1744 5.86 0.58 (0.01)

L SPL 28 −54 60 438 5.67 0.59 (0.02)

R LOC 30 −66 28 333 5.65 0.59 (0.01)

CUN −2 −78 26 1694 8.98 0.59 (0.02)

Abstract vs. Concrete

L AG −46 −60 30 3000 21 0.69 (0.01)

L pMTG −52 −46 2 1407 22.9 0.71 (0.01)

L DLPFC −34 18 58 1386 14.6 0.68 (0.01)

R DLPFC 38 18 44 477 14.5 0.76 (0.02)

L PC −10 −68 40 476 13.4 0.80 (0.02)

R IPS 41 −54 42 297 14.9 0.79 (0.01)

These areas are the left IPS, left superior parietal lobe (SPL), right lateral
occipital cortex (LOC), and cuneus bilaterally (CUN) in the “theme ver-
sus function” classification; the left pMTG and left IPS in the “color ver-
sus shape” classification; and the left AG, left pMTG, left and right
DLPFC, left precuneus (PC), and right IPS in the “abstract versus con-
crete” classification. Coordinates are presented in MNI 152 nonlinear
template space.
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goal-relevant properties during semantic cognition are not
fully understood. Here, we employed a semantic judgment
task to investigate whether the cortical networks that have
been shown to guide attention to task-relevant stimulus
properties during visual perception also shape attentional
priorities toward behaviorally relevant object attributes dur-
ing semantic retrieval. Because of the subtlety of feature-
guided attentional shifts that would make their capturing
with conventional fMRI methods elusive, we used MVPA
to quantify the discriminability of multivoxel patterns
pertaining to participants’ attention toward different, goal-
relevant semantic properties, with classification accuracy re-
flecting the relative strength of neural coding for attention
to a particular property within each region. Our results im-
plicate an extensive network within the left prefrontal, pos-
terior parietal, and ventral temporal cortices in semantic
control but also reveal diverse sensitivity profiles among
these regions in guiding attention to different conceptual
features during semantic retrieval. In line with our predic-
tions, our four-way SL classification scheme revealed the
contributions of several areas within the “multiple demand”

network (Duncan, 2010; Owen et al., 2000) in this task,
particularly within the left IFG and the left IPS. A property-
specific SL analysis offered further support for these
results, highlighting a key role for the left posterior parie-
tal cortex in feature-guided semantic retrieval: The left IPS
and the left pMTG were sensitive to the distinction
between concrete item properties (shape vs. color); a net-
work within the posterior parietal cortex, including the left
IPS, was further sensitive to the distinction between
abstract properties (function vs. theme), whereas the left
AG and areas within the left pMTG and DLPFC bilaterally
showed sensitivity to the distinction between concrete ver-
sus abstract item properties. Overall, the results of the
multivariate and property-specific SL analyses support
the conclusion that the left IPS is sensitive to distinctions
in attention within both concrete (color vs. shape;
Figure 3A) and abstract (function vs. theme; Figure 3B)
item properties, but not higher-order properties (abstract
vs. concrete properties; Figure 3C). In contrast, clusters
within the DLPFC are sensitive to distinctions in attention
only within the higher-order category level (i.e., abstract

Table 6. Estimates of Posterior Probabilities Associated with Each Hypothesis within Each Mask

Null AvC TvF CvS All

Left IPS <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 0.560 (0.618) 0.440 (0.618)

Left pMTG <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 0.992 (0.010) 0.008 (0.010)

Left IFG <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001) 0.999 (<0.001) <0.001 (<0.001)

Left SFG <0.001 (<0.001) <0.001 (0.004) <0.001 (0.001) 0.846 (0.274) 0.153 (0.272)

Left DLPFC <0.001 (<0.001) 0.883 (0.197) 0.115 (0.196) 0.002 (0.002) <0.001 (<0.001)

Values have been determined via a jackknife resampling procedure, where each of the 12 participants was left out of the Bayesian confusion hy-
pothesis estimation procedure in turn, and results were averaged across samples. The values in parentheses are the jackknife estimated standard
errors for the posterior probabilities, demonstrating the relative instability between different hypotheses. AvC = abstract vs. concrete properties;
TvF = theme vs. function; CvS = color vs. shape.

Figure 4. Results of the
Bayesian confusion matrix
analysis. Jackknifed posterior
probabilities are shown for
the five relevant classification
schemes across SL ROIs.
Median posterior probabilities
are presented in the figure
for classification schemes
with nontrivial probability
( p(Hi|C ) > .01) in each ROI.
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vs. concrete) properties (Figure 3C), but not within the
concrete (color vs. shape; Figure 3A) or the abstract
(theme vs. function; Figure 3B) properties.

In line with these results, a post hoc Bayesian confu-
sion matrix analysis showed evidence for activity patterns
reflecting attention across all four semantic features (i.e.,
color, shape, function, and theme) only within the left
IPS. The left IFG and pMTG were sensitive primarily to
attentional priorities toward concrete object properties
(i.e., color, shape), whereas the left DLPFC showed in-
creased discriminability between attention to concrete
and abstract properties, only when each higher-order
property category was considered as a whole. As hypoth-
eses were inherently nested within each other in this
analysis (i.e., dependence between concrete properties
implied that the classifier could distinguish between ab-
stract and concrete object properties as higher-order cat-
egories), the classifier was able to distinguish between
color and shape while confusing theme and function
but was also concurrently able to distinguish between
concrete and abstract features. The results of the
Bayesian confusion analysis clarify the outcome of the
multivariate and property-based SL analyses but also offer
additional insights regarding the role of the IPS in
feature-based semantic control. Although the property-
based SL offered some evidence for IPS involvement in
attention to abstract feature distinctions (i.e., function
vs. theme), the Bayesian confusion matrix analysis was
more agnostic on the point, in that both the “concrete
only” and “equal contributions” hypotheses were simi-
larly plausible for this region. One possible interpretation
of this finding is that it reflects larger individual variability
in the engagement of these attentional spotlight mecha-
nisms for abstract, relative to concrete, semantic features
during semantic control. An alternative possibility is that
neural encoding of attention to abstract semantic fea-
tures is more distributed or heterogeneous relative to
that of concrete features (at least for the features of func-
tion and theme used here). Overall, the results of the SL
and Bayesian confusion matrix analyses suggest that the
IPS may support attention to abstract semantic properties
but that its contributions may be more variable or
nuanced relative to the engagement of this area during
attention to concrete, goal-relevant semantic features.

We note that the stimuli employed in this study were
matched on word length and familiarity across condi-
tions. Inherent to the nature of our semantic task were
differences in imageability (i.e., stimuli in the color con-
dition were more imageable than stimuli in the function
and theme conditions); nevertheless, these differences
are unlikely to have influenced our results given that
our classifier was able to distinguish between conditions
that did not differ on imageability (e.g., color vs. shape,
theme vs. function). Stimuli may have varied on other di-
mensions (e.g., concreteness, frequency in written text),
which might have influenced the results. We attempted
to curtail the possibility of stimulus-specific effects with

the block design of the study, which allowed any individ-
ual stimulus influence to be averaged out of the analysis,
thus prioritizing only effects due to the attentional de-
mands directed toward a specific object property. In ad-
dition, the inclusion of RTs as regressors of no interest
limits the likelihood that our findings are guided by the
behavioral differences observed for certain condition
pairs. Although it is possible that stimulus-specific effects,
to an extent, may have influenced our results, the block
design, RT regressors, and variability in our stimulus set
to ensure lack of any systematic confounding relation-
ships among items render any contributions of stimuli ef-
fects to our univariate and multivariate classifications
negligible. The inclusion of the attentional cue in the tri-
als, which was employed to limit working memory de-
mands for each block, may have influenced, to some
degree, decoding performance. Although it is possible
that classification accuracy was driven, in part, by the
cue itself, the high accuracy in participant performance
on the semantic judgment task would imply that partici-
pants used the cues to perform the task, as opposed to
focusing on the cues per se.
Our findings are consistent with a substantial body of

work linking VLPFC regions to semantic control (Whitney
et al., 2009, 2011; Badre & Wagner, 2007; Badre et al.,
2005; Thompson-Schill et al., 1997). Critically, however,
this study is the first to demonstrate the involvement of
frontoparietal attentional systems, typically implicated in
visual perception, in a purely semantic memory task: Our
analyses show that neuronal clusters within the left pos-
terior parietal cortex support the modulation of attention
beyond spatial or perceptual object properties and along
both concrete and abstract semantic features during con-
ceptual processing (Liu et al., 2011). We note that, al-
though our results offer support for a domain-general
system that is active in shifting attention toward concrete
(or perceptually based) and abstract semantic features,
conclusions regarding the involvement of this system in
distinguishing among abstract semantic features from
these data were less definitive. Additional work is re-
quired to clarify precisely the kinds of abstract semantic
features represented within this hypothesized attentional
system. Moreover, although our current resolution pa-
rameters did not allow us to test this hypothesis directly,
future work employing high-resolution scanning proto-
cols may be able to identify feature-selective attentional
signals that would support some domain specificity ac-
cording to a particular topographical organization within
the left IPS. Such studies may also be in better position to
distinguish the exact contributions among multiple
regions within the inferior parietal cortex (e.g., AG,
supramarginal gyrus, IPS) to context integration and
semantic control (Binder et al., 2009). Similarly, our
property-specific SL and Bayesian confusion matrix anal-
yses revealed sensitivity to different semantic properties
across lateral frontal, posterior temporal, and lateral pari-
etal regions. On the other hand, the precise interactions
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among these different areas for semantic control still
remain unclear. Future studies employing methodologies
with higher temporal resolution may be able to identify
any hierarchical involvement of different regions within
the frontoparietal network in guiding attention to goal-
relevant properties during semantic tasks.
Our results point to a critical role of frontoparietal

regions, especially the left IPS, for feature-based semantic
control. Adaptive representations within the human fronto-
parietal cortex may adjust dynamically to task demands and
thus serve as a source of bias within a distributed semantic
memory system to sharpen attention toward goal-relevant
features (Woolgar, Hampshire, Thompson, & Duncan,
2011). The pattern of activity in the inferior parietal cortex
during semantic control mirrors evidence from studies of
visual attention in nonhuman primates showing that
neurons within this region may be sensitive to general dis-
tinctions among categorical outcomes (e.g., Fitzgerald,
Freedman, & Assad, 2011). Our results are further consis-
tent with functional connectivity analyses of human func-
tional neuroimaging data revealing that selectivity in the
recruitment of visual cortical areas for the processing of
specific features during visual attention is functionally
coupled with activity in frontoparietal regions when these
features are task relevant (Chadick & Gazzaley, 2011). On
the basis of this past work and the patterns of activity ob-
served during our semantic judgment task, we hypothesize
that neurons within the left IPS flexibly shift their activity
according to task goals and transform their selectivity
toward particular semantic features in line with more ab-
stract representations of behavioral relevance and irrespec-
tive of the characteristics of individual stimuli (Woolgar,
Thompson, Bor, & Duncan, 2011; Whitney et al., 2009;
Freedman & Assad, 2006). According to this prediction, ac-
tivity in this region during semantic control can support at-
tention to specific task-relevant object attributes (e.g., a
dime’s shape when used to tighten a screw or its value
when used to pay a parking meter), thus guiding the par-
ticular instantiation of the object in one’s active conceptual
space in working memory (see Hindy, Solomon, Altmann,
& Thompson-Schill, 2015). As such, they comprise a flexible
attentional mechanism that supports independent instanti-
ations of retrieved semantic representations for the same
concept, each highlighting different, context-dependent,
and goal-relevant semantic dimensions.
Contrary to past work primarily focusing on the role

of frontal and temporal networks in semantic retrieval,
in this study, we used MVPA to decode—for the first
time within semantic memory—the neural signatures of
attentional priorities toward particular semantic features.
The results of multivariate and property-specific SL
analyses, in conjunction with a novel Bayesian confusion
matrix analysis (Olivetti, Greiner, et al., 2012; Olivetti,
Veeramachaneni, et al., 2012) revealed, according to our
predictions, differential encoding of attentional referents
among frontoparietal and posterior temporal regions,
with DLPFC encoding attention to higher-order property

classes (abstract vs. concrete features), inferior frontal and
posterior temporal cortices encoding attention to con-
crete properties (color vs. shape), and left posterior pari-
etal cortex (IPS) encoding attention across all object
properties. These results strongly support a highly dy-
namic view of semantic control, according to which fronto-
parietal systems specify current attentional priorities and
carve different instantiations of the same stimulus during
semantic retrieval, depending on the salience status of
particular goal-relevant semantic features.

Reprint requests should be sent to Evangelia G. Chrysikou, De-
partment of Psychology, University of Kansas, 1415 Jayhawk
Blvd., m 426 Fraser Hall, Lawrence, KS 66049, or via e-mail:
lilachrysikou@gmail.com.

Note

1. We note that, at the more permissive corrected cluster-
based threshold (F = 2.3, pcorr < .05) employed for the distinc-
tion between abstract properties (theme vs. function), the
distinction between the concrete properties (color vs. shape)
also revealed activity in the left IFG, a finding in parallel with
the results of the Bayesian analysis.
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